

AUDACITY Bolder than Ever CADA ACADEMY of DOCTORS of AUDIOLOGY

Positioning Professional Care Value Through Innovative Practice Strategies

Presenters

- David J. Smriga, M.A.
- Gregory Frazer, Au.D., Ph.D.
- Adam DiPuccio, M.A.
- Dale Thorstad

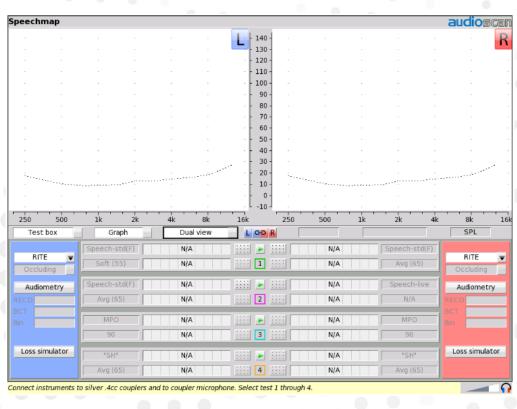
Agenda For Today's Presentation

- Creating a unique patient experience through verification
- Leveraging purchasing decisions to better meet pricing challenges
- Examining third-party pay options from an opportunity perspective
- Critical thinking regarding technology choices
- Building a clinical service for the PSAP (OTC) market

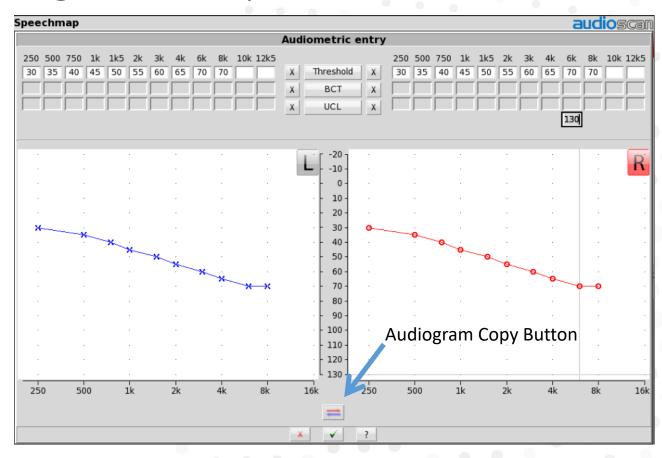
Creating a Unique Patient Experience Through Verification

Modern Verification Reference

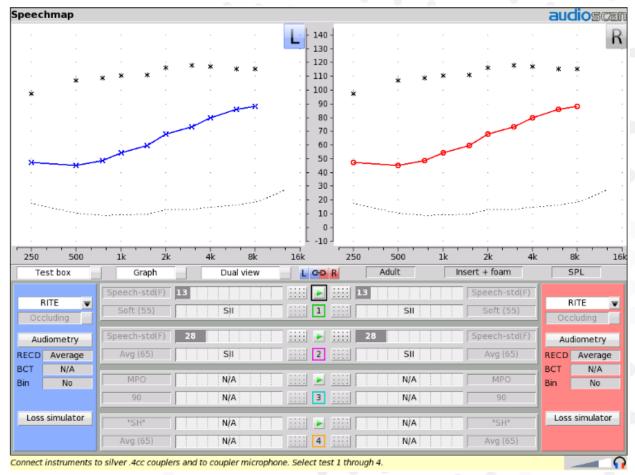
- Speechmapping
 - Uses speech energy as the input stimulus
 - Measures output (REAR) rather than insertion gain (REIR/REIG)
 - Can be used to:
 - Verify target acquisition
 - Verify speech audibility improvement

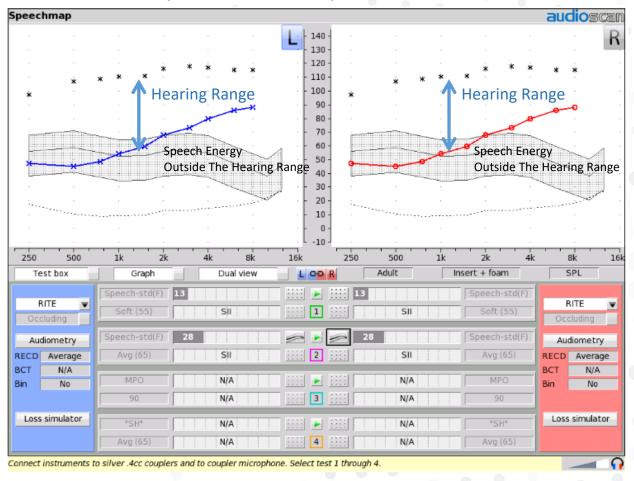


Using Speechmapping as a Counseling Tool

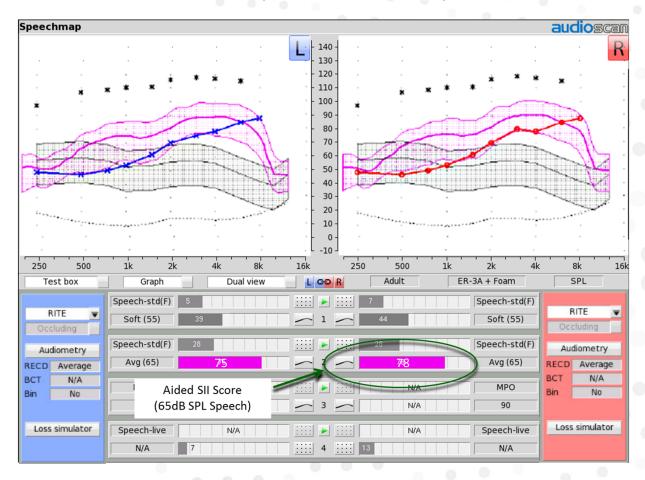

- During the diagnostic visit
 - Once you have determined that this is a patient you intend to treat with amplification, move to the following counseling process

Access the Speechmap Screen




HL Audiogram Entry

The Basic Speechmap Screen – Verifit2


The Basic Speechmap Screen – Verifit 2

FIRST KEY VALUE PROPOSITION:

We need to bring speech sounds back into your listening range

Aided and Unaided Speechmap

SECOND KEY VALUE PROPOSITION:

If we do our job well, we should get an aided SII approaching if not exceeding "X"

The Value of This Approach

- Defines two ways of judging hearing aid value that have NOTHING to do with sound quality
- Shifts the focus away from "product purchase" and towards "problem mitigation"
- REQUIRES (and demonstrates) the guidance and expertise of professional care

Leveraging Purchasing Decisions to Better Meet Pricing Challenges

So, how did we get to where we are today?

 2017: OTC Hearing Aid Act passed by U.S. Senate and soon after signed into law by President Trump.

LEGISLATION

US Senate Passes OTC Hearing Aid Act as Part of FDA Reauthorization Act of 2017

Published on August 4, 2017

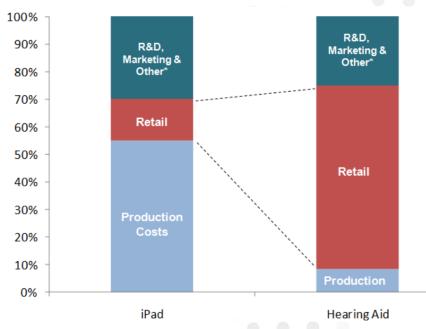
Jpdated August 10, 2017

The US Senate passed \underline{HR} 2430, the Food and Drug Administration (FDA) Reauthorization Act of 2017, by a vote of $\underline{94-1}$ on August 3. The bil

Key Conclusions

- Two key factors drove the decision to create an OTC category for hearing aids:
 - Availability
 - Historically low market penetration
 - Suggesting current delivery system is not able to reach more people
 - Affordability
 - Hearing aids are expensive
 - · Largely driven by high cost of professional care

Embracehearing.com


EFFECTIVE PRICE PER VISIT: EXAMPLE CA	ALCULATION
Manufacturer Price	\$1,000
"Bundled" Price	\$5,000
Less: "Fair" Sale Price	\$2,000
Effective Price for Follow-on Services	\$3,000
Divided by: Actual Follow-on Visits	3
Effective Price per visit	\$1,000

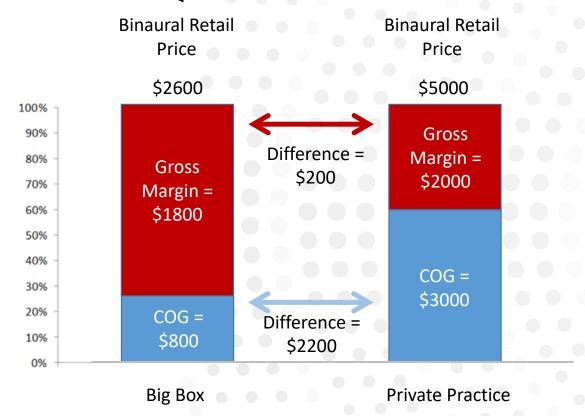
	EFFECTIVE PRICE PER VISIT				
	"Fair" Sale Price				
Visits	\$1,500	\$1,750	\$2,000	\$2,250	\$2,500
1	\$3,500	\$3,250	\$3,000	\$2,750	\$2,500
2	\$1,750	\$1,625	\$1,500	\$1,375	\$1,250
3	\$1,167	\$1,083	\$1,000	\$917	\$833
4	\$875	\$813	\$750	\$688	\$625
5	\$700	\$650	\$600	\$550	\$500
6	\$583	\$542	\$500	\$458	\$417
7	\$500	\$464	\$429	\$393	\$357
8	\$438	\$406	\$375	\$344	\$313
9	\$389	\$361	\$333	\$306	\$278
10	\$350	\$325	\$300	\$275	\$250

"At the risk of stating the obvious, we submit to you that these are very high numbers.

In our view, it is unlikely that hearing aid wearers would be willing to pay per-visit prices at these levels, if given a transparent choice."

Audicus.com

"The comparison is startling, and should raise questions on whether the industry and hearing aid costs are operating at its most favorable level for the consumer."

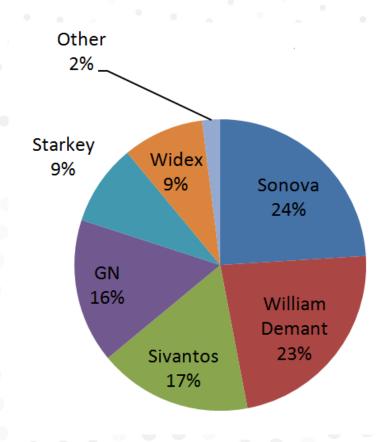

	"Big Six" High-End Technology
Wholesale List Price	\$2099.00
30% Provider Discount	
"Big Box" Retail Price	
V.A. Acquisition Cost	

	"Big Six" High-End Technology
Wholesale List Price	\$2099.00
30% Provider Discount	\$1469.30
"Big Box" Retail Price	
V.A. Acquisition Cost	

	"Big Six" High-End Technology
Wholesale List Price	\$2099.00
30% Provider Discount	\$1469.30
"Big Box" Retail Price	\$1299.00
V.A. Acquisition Cost	

	"Big Six" High-End Technology
Wholesale List Price	\$2099.00
30% Provider Discount	\$1469.30
"Big Box" Retail Price	\$1299.00
V.A. Acquisition Cost	\$375.00

This Comparison Raises a Completely Different Question


Proposition

If a practice's cost of goods can be better managed, affordability can be addressed without impacting operating margins

So, how can we lower cost of goods?

- Option 1:
 - Who you buy from

The "Big Six"

http://hearinghealthmatters.org/hearingnewswatch/2013/research-firm-analyzes-market-share-retail-stores-prospects-of-major-hearing-aid-makers/

COG Comparison: "High End" Technologies

	Brand 1	Brand 2	Brand 3	Brand 4
Big Six	\$1247	\$1300	\$1160	\$1300
Other	\$845	\$877	\$1000	\$450
	20 channel Adapt. Dir. Wireless FB Mgt. Noise Mgt. Wind Noise Rechargeable			18 Channel 10KHz Bandwidth Scene Detect FB Mgt. Active Noise Guard Wind Shield Adapt. Dir. Tinnitus Module

Reduced COG Range: \$320 - \$1,700 a pair. NO impact on practice margin.

So, how can we lower cost of goods?

- Option 2:
 - How you buy

Group Purchasing

- Concept:
 - Secure prices from key suppliers based on collective buying volume
- Execution:
 - Some groups offer services that are paid for by member purchases
 - This requires a margin on every hearing aid sale through the buying group
- Reality:
 - There are too many buying groups
 - Dilutes the influence of any one of them

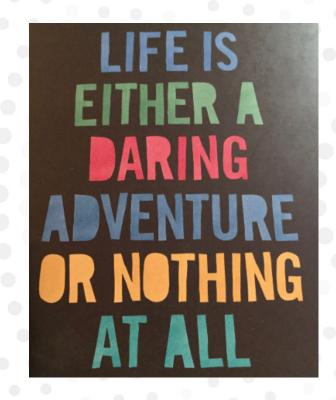
Both options require a change in behavior

Changing behavior isn't easy

The psychology of change resistance:

- 1. We are swayed by marketing
- 2. Habit

Alain Sampson, Ph.D. – Founder of behavioraleconomics.com and Chief Science Officer to Syntoniq



Alain Samson Ph.D.

Examining third-party pay options from an opportunity perspective

The Opportunity of Thinking Anew

"If you do what everyone else does, you get what everyone else gets."

Here's an idea . . .

Arrange for insurance companies to "push" patients through your doors!

Leveraging Insurance Relationships

- Educate the surrounding medical community with Lunch & Learns
- Conduct your own prior authorizations

Managing Growth

- Add new offices to expand coverage strategically
- Outsmart your competition by locking up networks

Practice Growth

- Disease State Marketing Program
 - Hearing Healthcare Marketing Company
 - Bob Tysoe
 - Marketing Consultant and Sales Trainer

Operational Resources

- Hear Billing Solutions
 - Audiology billing, credentialing and consulting services made easy
 - To tell you more. . .
 - Stacey Long

Coding and Reporting

- Standardize coding within the practice
- Automate report writing to save time and insure accuracy

Return On Investment: An Example

- 2017 office operation
 - Two full time audiologists working 40 hours per week each M-F
 - Over 2,000 referring practitioners: MD's, DO's, Nurse Practitioners, RN's
 - Receiving an average of 18-20 referrals per day
 - Generated \$1,495,000 in insurance collected revenue
 - This does not include cash revenue

How Best To Get Started

- Educate yourself
- Meet with insurance representatives
- Get employee buy-in
- Make a decision early on to handle billing internally or externally
- Make sure report writing can survive an audit
- Standardize coding within the practice
- Secure a good healthcare attorney

Critical thinking regarding technology choices

If they build a better mouse trap, it would help if you know how to use it.

Feedback Management

- DFS Ultra II, Auto DFS
- Feedback management
- Feedback manager
- Feedback test

- Feedback Preventer
- Feedback Shield
- Feedback Cancellation
- Feedback Analyzer

Noise Management

- Noise Management
- Open Sound Navigator
- 3D Classifier

- Sound Conductor
- SurroundOptimizer
- Noise Tracker II

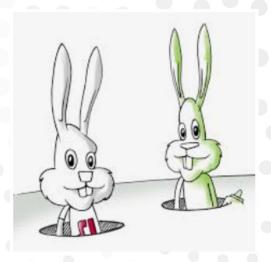
Automatic Programs

- SoundNav
- AutoSurround

- Environmental Optimizer II
- Environment Manager

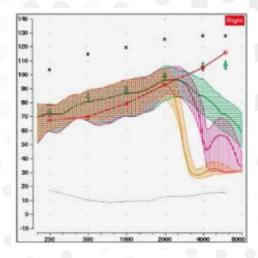
Spatial

- Spatial Awareness
- Spatial SpeechFocus
- Spatial Sound


- SphereSound
- SpeechPro
- Spatial Sense

Directionality

- SpeechBeam
- Binaural Directionality III


- Directional Processing
- HD Locator

Frequency Lowering

- Speech Rescue
- Sound Shaper

- Frequency Lowering
- SoundRecover2

Loud Sounds

- Soft-Level Noise Reduction
- Anti Shock II

- Impulse Noise Reduction
- TruSound Softener

- Sound smoothing
- Automatic Classifier
- Voice Ranger


- Sound Radiance
- Reverb Reducer
- Digital Pinna

Building a Clinical Service for the PSAP (OTC) Market

One thing that seems apparent...

• The prevailing perception is that there is no role (or at least no role yet defined) for the hearing care professional in the OTC category.

We'll Start With ANSI/CTA - 2051

 Crafted by the Consumer Technology Association's R6 Portable Hand-Held and In-Vehicle Electronics Committee

• Scope:

 The standard includes performance metrics and associated target values for consumer products that provide personal sound amplification or enhancement to a user.

ANSI/CTA - 2051 Sections

- Category 1:
 - The description of a hearing device performance parameter which must include the value measured per the specified test method. Category 1 requirements include a threshold or acceptable range for the parameter measured.
 - Parameters included in Category 1 are:
 - Frequency Response Bandwidth
 - Frequency Response Smoothness
 - Maximum Acoustic Output
 - Output Distortion
 - Input Distortion
 - · Self-generated noise levels

Category 1 Purpose

- Consumer Safety:
 - Since these products are intended to be usable without any professional oversight, some limits on acceptable performance standards must be established.

The 3 Category 1 Parameters Killion's Presentations Zeroed in on:

- Frequency Response Bandwidth
- Frequency Response Smoothness
- Maximum Acoustic Output

Frequency Response Bandwidth

- Determine the upper and lower cut off frequencies at which the estimated insertion response falls 10dB below the average level of insertion gain in the 1/3 octave bands from 500 to 3150 Hz.
- Stimulus to be used:
 - 80dB pure tone sweep
 - NOTE: an alternative signal (i.e., pink noise) can be used if interactive functions compromise the sweep result.

Coupler to be used:

 A 2cc coupler should be used unless a bandwidth greater than 8KHz is to be verified. In this case, an ear simulator (711) coupler should be used.

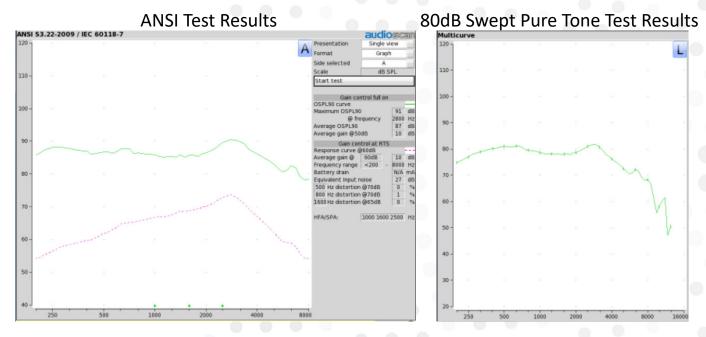
CORFIG Tables Provided in ANSI/CTA – 2051 Standard

- 2cc coupler CORFIG's for ITE devices
- 2cc coupler CORFIG's for BTE devices
- Ear Simulator CORFIG's for ITE devices
- Ear Simulator CORFIG's for BTE devices

Bandwidth PASS/FAIL Criteria

- Bandwidth < than 5KHz = FAIL
- Bandwidth > 5KHz but < 10KHz = PASS- Standard Band
- Bandwidth at or above 10KHz = PASS- Wide Band

Frequency Response Smoothness


 No peak in the 1/3 octave frequency response shall exceed 12dB relative to the average levels o the 1/3 octave bands two third octaves above and below the peak.

Maximum Peak Output

• Peak OSPL90 must be less than 120dB

Example of Raw Data Collection: Electro-acoustic Measures

Product: Etymotic Research "Bean" at "Normal" Setting

CTA Level One Findings:

Output = 91dB PASS Bandwidth = 100 – 8200Hz PASS

Peak = 8dB PASS

We'll Follow-up With Associations' Consensus Paper

- Compiled by the four professional associations of the hearing industry.
- Scope:
 - Offers 5
 recommendations to the
 FDA that would assist
 them in insuring
 consumer safety when
 using OTC products.

The Consensus Paper Recommendations:

- Limit HFA FOG to 25dB in a 2cc coupler
 - This translates into 12-16dB gain for 65dB speech depending on mild or moderate degree of loss
- Use input compression and provide a volume control
- Limit Peak OSPL90 to 110dB max, 105dB max for mild losses
- Limit to the use of instant fit ear tips, not earmolds
- If a T-coil is incorporated, it should adhere to the current T-coil standards.

Clinical Verification of Consumer Electronics Hearing Products

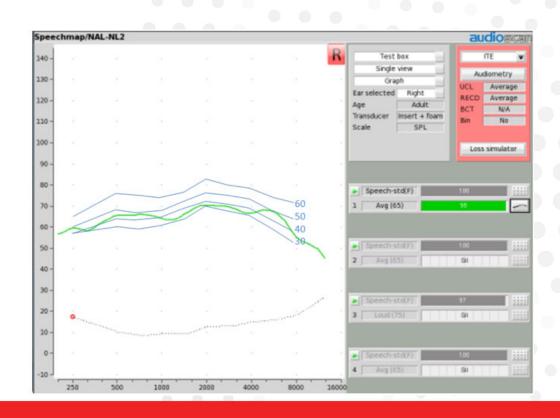
David J. Smriga, M.A.

#AUDIOLOGYNOW17

Smriga Study Worksheet

				For ITE	Measure	ments Usin	g 2cc Cou	pler									
	STEP ONE:	In Row 12,	enter 1/3	ocatve ban	d values (F	Red Numbe	rs) obtain	ed after cor	npleting 80	dB pure to	one sweep to	est in "Mul	lti-Curve" a	and chang	ing "Format	" to "Table	" view
	STEP TWO:	Find the fi	rst negativ	e high frequ	iency valu	e greater th	nan -2dB i	n Row 23. N	lote the 1/	/3 ocatve t	frequency as	sociated v	vith that v	alue			
	STEP THREE	: Identify t	he frequer	ncy value ju	st to the le	eft of the al	oove frequ	iency value	noted. Ty	pe this fre	quency num	ber into Ce	ell J 24				
	STEP FOUR	: Enter valu	es request	ed in cells (033 and D	34									RED number	rs = Numb	ers you enter
	STEP FIVE:	Enter Peak	OSPL90 va	lue from 20	c coupler	measureme	ent in Cell	D38							BLUE numb	ers = Numl	bers automaticall
OTC Product:															BOLD numb	ers = Answ	vers that determin
ENTER 2CC VALUES FRO	M 80dB SV	VEEP:															
1/3 Octave Frequency	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000
2cc values (80dB Sweep)	75	77	79	80	81	80	80	79	78	78	79	81	81	78	77	73	68
Estimated IR Values - ITE	71.7	73.6	75.5	76.5	77.7	76.9	77.2	76.1	75.6	76.9	80.3	84.4	81.9	73.9	69.1	62	53.5
10dB Down Calculation to	determine Ro	ow 22 value	:														
1/3 Octave Frequency	500	630	800	1000	1250	1600	2000	2500	3150 A	vg.	Avg10dB						
Estimated IR Values - ITE	77.7	76.9	77.2	76.1	75.6	76.9	80.3	84.4	81.9	78.56	68.56						
FREQUENCY RANGE CAL	CULATION																
1/3 Octave Frequency	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000
Estimated IR Values - ITE	71.7	73.6	75.5	76.5	77.7	76.9	77.2	76.1	75.6	76.9	80.3	84.4	81.9	73.9	69.1	62	53.5
- 10dB Down Value	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56	68.56
Range Values (+ = in range)	3.14	5.04	6.94	7.94	9.14	8.34	8.64	7.54	7.04	8.34	11.74	15.84	13.34	5.34	0.54	-6.56	-15.06
						Н	i Frequen	cy Value =	5000 H	Iz	PASS if high	frequency	value >/=	5000Hz			
→ ITE WORKSH	FFT (2cc)	BTF W	ORKSHE	FT (2cc)	ITF V	VORKSHE	FT (Far S	Simulator)	BT	F WORK	SHEET (Ear	Simulat	C (+)	: [4]			

1) CTA Test Summary

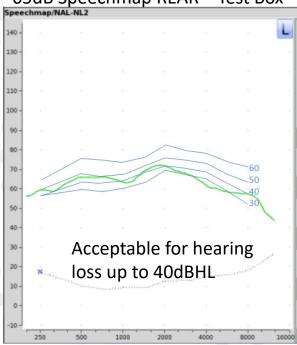

Results

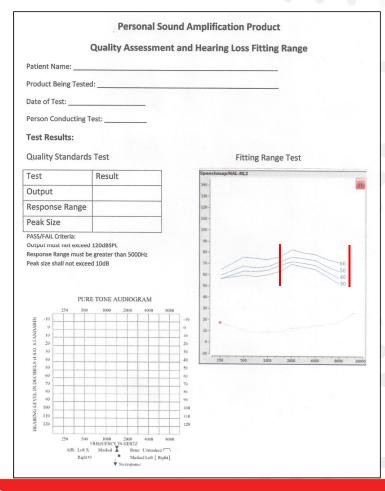
9 PSAP Products Tested

25 Product Configurations Tested (24 testable in box)

TEST RESULT	# OF CONFIGURATIONS	REASON FOR FAILURE
Pass all 3 tests	11	
Fail 1 test	8	2 bandwidth fails 6 peak ampl. fails
Fail 2 tests	3	1 output fail3 bandwidthfails2 peak fails
Fail all 3 tests	2	

Fitting Range Template Overlaid On Test Box Speechmap REAR




Proposed "Basic" PSAP Test Battery

Product Quality Test Results

TEST	RESULT
Bandwidth	PASS
Peak	PASS
Maximum Output	PASS

65dB Speechmap REAR – Test Box

Proposed PSAP Clinical Report Summary

Potential Applications

- A service audiologists can offer to existing PSAP owners
- A service audiologists can offer to consumers interested in a certain PSAP
- A clinical procedure for quantifying PSAP products an audiologist may wish to stock/sell

Conclusions

- A professional can offer a potentially useful service to the PSAP and future OTC market
- The described test package can be completed quickly and easily
- This service can be offered for a modest fee
- This interface can lead to additional testing and possible better treatment with other devices

- We must shift consumer focus from a "product transaction" view to a "health care" view
 - Speechmapping helps shift the value-focus from "sound quality" to "problem mitigation"
 - Tangible outcome verification experiences
 - Integration of rehabilitative care into the treatment package
 - Outcome measures to validate effectiveness of treatment

- There are ways to significantly lower COG without impacting operating income
 - Expanding your view of who to buy from
 - Commit to purchasing together to secure better pricing

- Partnering with insurance companies
 - Can be use as a low-cost marketing technique
 - Get insurance companies (and referrers) to push people through your door
 - · Requires a lot of front-end work, but has a huge back end pay-off potential
 - There are outside resources that can help

 Selectively understanding and applying key hearing aid technologies can showcase the value of professional care from a product perspective.

 If you have a test box, you can perform a valuable service NOW for the existing PSAP market, and later for the OTC market